کاربرد الگوریتم انبوه ذرات و الگوریتم ژنتیک در شبیه سازی و پیش بینی تقاضای انرژی
نویسندگان
چکیده
مدیریت تقاضای انرژی از اهمیت فراوانی در برنامه ریزی و تامین امنیت اقتصادی کشورها برخوردار است. شناسایی عوامل موثر بر روند تقاضای انرژی کشور و پیش بینی مصرف آتی آن می تواند به سیاست گذاران و فعالان در بازار انرژی در جهت تصمیم گیری های اقتصادی و بهبود عملکرد بازار و تامین امنیت سوخت کشور کمک کند. امروزه روش های نوینی برای مدل سازی و پیش بینی پدیده های مختلف ابداع گشته است که در میان این روش ها الگوریتم های تکاملی جایگاه ویژه ای دارند. در میان الگوریتم های تکاملی، الگوریتم ژنتیک و الگوریتم بهینه یابی انبوه ذرات از جمله شناخته شده ترین و پرکاربردترین روش ها در علوم مختلف می باشند. از این رو، در این مطالعه برای تخمین و پیش بینی روند تقاضای انرژی کشور از الگوریتم های ژنتیک و انبوه ذرات در قالب دو الگوی خطی و نمایی استفاده شده و کارایی آنها مورد ارزیابی قرار گرفته است و با استفاده از کاراترین الگو و روش و بر اساس سناریوهای مختلف، روند آتی تقاضای انرژی کشور تا سال 1404 پیش بینی شده است . نتایج مطالعه نشان دهنده دقت وکارایی بالای الگوی نمایی برآورد شده با استفاده از الگوریتم انبوه ذرات در مقایسه با الگوریتم ژنتیک بوده است. همچنین نتایج مطالعه نشان می دهد که کارایی الگوهای خطی برآورد شده با استفاده از هر دو الگوریتم تفاوت محسوسی ندارند. با این حال، بررسی نتایج الگوها و روش های مختلف برآورد شده کارایی و دقت بالای الگوی نمایی برآورد شده با استفاده از الگوریتم انبوه ذرات را تائید می کند.
منابع مشابه
کاربرد الگوریتم انبوه ذرات و الگوریتم ژنتیک در شبیهسازی و پیشبینی تقاضای انرژی
مدیریت تقاضای انرژی از اهمیت فراوانی در برنامهریزی و تامین امنیت اقتصادی کشورها برخوردار است. شناسایی عوامل موثر بر روند تقاضای انرژی کشور و پیش بینی مصرف آتی آن میتواند به سیاستگذاران و فعالان در بازار انرژی در جهت تصمیمگیریهای اقتصادی و بهبود عملکرد بازار و تامین امنیت سوخت کشور کمک کند. امروزه روشهای نوینی برای مدلسازی و پیش بینی پدیدههای مختلف ابداع گشته است که در میان این روشها ال...
متن کاملپیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات
Storing the electrical energy in large scale is impossible. So, it is necessary to identify the factors affecting the electricity demand. Researchers have used different methods to forecast the future demand of electricity, among them intelligent methods and fuzzy based methods are more popular. Since ANFIS structure is based on researcher’s experience about phenomenon, the created structure ...
متن کاملپیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات
با توجه به عدم امکان ذخیره انرژیالکتریکی ، شناسایی عواملموثر بر تقاضای این حامل انرژی و پیشبینی دقیق روند آتی آن، ضرورت دارد . تاکنون روشهای مختلفی در این زمینه مورد استفاده قرار گرفته است که در میان آنها روشهای هوشمند و بهویژه روشهای فازی، دارای قابلیتهای بیشتری هستند. در مطالعه حاضر از سیستم استنتاج عصبی- فازی ترکیب شده با الگوریتم انبوهذرات ( PSO -ANFIS ) استفاده شده و پس ازشب...
متن کاملکاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی
پیشبینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژهای دارد. روشهای مختلفی برای پیشبینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیکهای غیرخطی نتایج مطلوبتری داشته است. شبکههای عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیکهای غیرخطی در این زمینه میباشند که هر یک نقاط ضعف و قوت خ...
متن کاملپیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات
با توجه به عدم امکان ذخیره انرژیالکتریکی ، شناسایی عواملموثر بر تقاضای این حامل انرژی و پیشبینی دقیق روند آتی آن، ضرورت دارد . تاکنون روشهای مختلفی در این زمینه مورد استفاده قرار گرفته است که در میان آنها روشهای هوشمند و بهویژه روشهای فازی، دارای قابلیتهای بیشتری هستند. در مطالعه حاضر از سیستم استنتاج عصبی- فازی ترکیب شده با الگوریتم انبوهذرات ( pso -anfis ) استفاده شده و پس ازشبیه...
متن کاملانتخاب سناریوی مناسب برای پیش بینی تقاضای انرژی بخش خانگی-تجاری با استفاده از الگوریتم بهینهسازی انبوه ذرات
در دهههای اخیر، انرژی در کنار سایر عوامل تولید نقش تعیینکنندهای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. رشد اقتصاد جهان و روند صنعتی شدن موجب افزایش تقاضا و مصرف انرژی شده است. از سوی دیگر از میان بخشهای مصرفکنندهی انرژی، بخش خانگی– تجاری یکی از پرمصرفکنندهترین بخشهای تقاضای انرژی است. بطوریکه بیش از 34% از میزان مصرف انرژی را نسبت به سایر بخشها به خود اختصا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
انرژی ایرانجلد ۱۵، شماره ۲، صفحات ۰-۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023